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Improvements are made in nonreflecting boundary conditions at
artificial boundaries for use with the Helmholtz equation. First, it is
shown how to remove the difficulties that arise when the exact DtN
{Dirichlet-to-Neumann)} condition is truncated for use in computa-
tion, by modifying the truncated condition.s Second, the exact DtN
boundary condition is derived for elliptic and spheroidal coordi-
nates. Third, approximate local boundary conditions are derived
for these coordinates. Fourth, the truncated DtN condition in elliptic
and spheroidal coordinates is modified to remove difficulties. Fifth,
a sequence of new and more accurate local boundary conditions
is derived for polar coordinates in two dimensions. Numerical re-
sults are presented to demonstrate the usefulness of these
improvements, © 1995 Academic Press, Inc.

1. INTRODUCTION

To solve an equation in an infinite domain numerically, it
is usnal to limit the computation to a finite domain (). This
requires a boundary condition on the outer boundary S of £},
which is often called an artificial boundary. It is desirable that
this condition be such that the solution of the problem in {} is
exactly the restriction to {} of the solution of the original prob-
lem 1n the infinite domain. Such a boundary condition is called
an exact nonreflecting boundary condition because it permits
waves in {} to travel outward without any spurious reflection
from the artificial boundary. An exact nonreflecting boundary
condition, the DIN (Dirichlet-to-Neumann) condition, was de-
rived by Keller and Givoili [1} for the Helmholtz equation
when the artificial boundary is a circle or sphere. It is a nonlocal
condition, and it involves an infinite wigonometric or spherical
harmonic series. In practice the infinite series in the DIN condi-
tion is truncated at a finite number of terms, and it is then no
longer exact.

Our first goal is to modify the truncated DtN condition to
make it more accurate and to eliminate the real eigenvalues of
the problem in £} which may make that problem difficult or
impossible to solve. Our second goal is to derive the DtN
condition for elliptic and spheroidal artifictal boundaries. Third,
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we shall derive approximate local boundary conditions for ellip-
tic and spheroidal coordinates, which are the analogues of the
Bayliss—Gunzburger—Turkel (BGT) [2] boundary conditions in
polar and spherical coordinates. Fourth, we shall modify the
truncated versions of the DN conditions for elliptic and spheroi-
dal boundaries. Fifth, we shall present a sequence of local
boundary conditions in two-dimensional polar coordinates,
which are much more accurate than the BGT conditions at low
frequencies and equally accurate at high frequencies.

The DIN condition is of the form 4L/ = MU, where M is a
nonlocal operator acting on the value of U/ on the artificial
boundary. In the truncated condition 3,0/ = MU, only modes
with mode number 7 < N are retained in MYV, Consequently
for the modes with # > N the truncated condition is just
8,/ = 0, which is the source of the real eigenvalues of the
problem in (). The effect of these eigenvalues can be avoided
by choosing N large enough, as Harari and Hughes [3] have
shown, when S is a circle or sphere. However, this requires the
use of a large number of modes when the frequency is high or
the radius of the circle or sphere is large.

There is a much simpler way to remove these difficulties,
as we shall show. It is to replace the condition 4,/ = 0 on the
modes above N by another condition, such as the Sommerfeld
condition 4,7 = kU or one of the BGT conditions. We shall
see that this modification removes the difficulty due to real
eigenvalues and decreases the error. Furthermore, the effort
required 1o implement any such modification is minimal. We
call the new condition the modified DtN boundary condition.

We can also view the new boundary condition as a modifica-
tion of the Sommerfeld condition or of one of the BGT condi-
tions. These conditions tend to be accurate for large values of
ka but inaccurate for small values of ka. Here k is the wave
number in the Helmholtz equation and « is the radius of the
artificial boundary. To correct them for ka small, we modify
them by imposing the DIN condition on the modes with
n = N. The resulting boundary condition is just the modified
DtN condition.

2. THE DN FORMULATION

Let % be a bounded domain in d = 2 or d = 3 space
dimensions, and let T" be its piecewise smooth boundary., We
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seek the solution of the Helmholtz equation in the region exte-
rior to PR, satisfying some boundary condition on I and satis-
fying the Sommerfeld radiation condition at infinity. The
boundary value problem for U is

AU + KU = f outside R 2.1

aU+,83—g=gonI“ (2.2)

(2.3)

lim @072 (Elr - ikU) =0.
res ar

Here k is the wave number, fis a source term, and o, 3, and
g are functions defined on I'. We assume that the source term
f has compact support.

We now surround the object % and the support of f by
an artificial circular or spherical boundary § of radius a. The
computational domain £} is the region inside § and exterior to
. To solve (2.1)-(2.3) in (), we must impose a boundary
condition on r = a. It should be such that the solution of
{2.1)—(2.3) with this artificial boundary condition coincides
with the restriction to () of the solution in the infinite domain.
Keller and Givoli [1] derived such a boundary condition and
called it the DiN map, because it relates Dirichlet to Neumann
data at r = a. It takes the general form

¥ =d.

a,U = MU, (2.4)

This condition is global on the artificial boundary. In two dimen-
sions it is

kHY (ka) (2

=
W@ 0= 2 g o

r=0

cos n(f — 8"YU(a, 6" dF'.
(2.5)

Here AP is the Hankel function of the first kind of order n,
and the prime after the sum indicates that the term with n =
0 is multiplied by & The corresponding condition for three
dimensions is given by {4.15).

The solution of (2.1) and (2.2) in ) with 24)atr = ais
unique and coincides with the restriction to £} of the solution
of (2.1)=(2.3). This follows from the fact that any solution of
(2.1}, (2.2), and (2.4) within {) can be continued into a solution
of (2.1)—(2.3) and from the uniqueness of the solution of (2.1)~
(2.3). It was also shown directly by Harari and Hughes [3].

3. THE MODIFIED DtN CONDITION: THEQORY

In practice (2.5) must be approximated by truncating the
series at a finite value N. We denote the truncated DtN map
by M¥, and we replace (2.4) by
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a,U = MU, (3.1)

rF=a.

Then the new problem is (2.1), (2.2), and (3.1).

Equation (3.1) is exact for the low modes, 0 = n = N, but
it imposes the incorrect condition 8,/ = 0 at r = a on all
higher modes. As a consequence the new problem will have
an infinite sequence of real eigenvalues k2 = 0, j = 1, 2, .,
when a/f3 is real. When &* is such an eigenvalue, the new
problem will not have a solution unless f satisfies certain solv-
ability conditions, and if it does have a solution, it is not
unique. Harari and Hughes [3] showed that this difficulty can
be eliminated by choosing N = ka. This restriction on ka for
a fixed value of N is an artifact of the truncation. Moreover, it
could require including many more terms in the DtN map than
may actually be necessary to achieve a desired accuracy. It
may also create a large overhead in computation, especially in
three dimensions. We'shall now demonstrate how to overcome
this difficulty and simuitaneously improve upon the accuracy
of the solution with the truncated DtN boundary condition,
without any restriction on ka.

Let B denote a linear operator, such that (2.1), (2.2), and
3,/ = BU at r = a is a well-posed problem, One example of
such an operator 18 B = ik, which occurs in the Sommerfeld
condition. We shall apply B to the higher modes, without modi-
fying the exact boundary condition on the lower modes. To do
so, we simply add and subtract BU on the right side of (2.4) and
then truncate M — B. This yields the modified DtN condition

= (MY — BMYU '+ BU, (3.2)

rF=a.

The boundary condition (3.2} coincides with (2.4) and (3.1)
for all modes up to N. However, on all higher modes (3.2) is
a7 = BU. We shall now present a condition on B which is
sufficient to ensure the well-posedness of the problem (2.1),
(2.2), and (3.2), regardless of the wave number &, the pomt of
truncation N, or the shape of the obstacle I.

TueoreM 3.1.  Let B be a linear operator that acts on the
values of U or the outer boundary r = a such that

| TBds>0 Yoo (33)

Then in £} (2.1), (2.2), and (3.2) have a unique solution,
The same conclusion holds in elliptic or spheroidal coordi-
nates, with S defined by p. = a and r replaced by p in (3.2).

Proof. Let U be a solution of (2.1}, (2.2), and (3.2), with
f=0and g = 0. We must show that [/ is the trivial solution
U = 0in Q. To do so, we multiply (2.1) by U, the complex
conjugate of U, and integrate over {}. Using integration by
parts and the homogeneous boundary condition on I', we obtain
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J ORUE = Klup1d0 ~ | [T - BYU + TBUY ds = 0.
(3.4)

Taking the imaginary part of (3.4) yields

m | (UM¥— BY + TBUTds =0.  (35)
Onr=alet U= U.+ U., where U is the sum of the modes
numbered n = N, and /., is the sum of the modes numbered
above N. Because the modes are mutally orthogonal with re-
spect to the L, inner product on r = a, we can rewrite (3.5) as

[ (O-MYU< + T-BU.)ds = 0. (3.6)
For simplicity, we now consider the two-dimensional case.

We compute explicitly the first expression in (3.6), using (2.5),
to get

m | TM*U.ds

F3

J:T Ula, 8"}y cos n@ 46’

\

(3.7)

N
= 2 Im an{
=0

+ j:r Ula, @) sinnd do'
Here
_ kH (ka)
o, = HOGa) (3.8)

We write H" = J, + iY, in (3.7) and use the fact that the
Wronskian of J,(ka) and Y, (ka) is equal to 2/7ka. Then we find
that the imaginary part of «, is given by

2

Ima, = —————— >0,
men = R Y

3.9)

From (3.7) and (3.9) it follows that the first term in (3.6) is
positive unless U, = 0. Similarly, {3.3) shows that the second
term in (3.0) is positive unless /., = 0. Thus (3.6) implies that
U=U:+ U.=00nr = a Since B and M" involve only
the values of U on r = a, we infer from the boundary conditicn
(3.2) that 3, = 0 on r = 4. Since U is analytic in €}, this
implies that U is identically zero in Q. |

The hypothesis of Theorem 3.1 clearly holds when the opera-
tor B is a constant with a positive imaginary part. For the
Sommerfeld condition 3,U/ = ik{/ and the first-order BGT con-
ditions, given by (4.2) for the circle and (4.11) for the sphere,
both with m = 1, the imaginary part of the constant operator
B is equal to k. For the first-order local conditions, given by
(4.27) for the ellipse and by (4.49) for the spheroid, both with
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m = 1, the imaginary part of B is kf sinh a, where f > 0.
Therefore Im B is positive. Hence, the problem (2.1), (2.2},
and the modified DIN condition (3.2) with any one of these
five boundary operators is weli-posed for any obstacle and any
wave number, regardless of the point of truncation N. However,
the condition (3.3} is not satisfied by the second-order BGT
condition (4.2) with m = 2, when § is a circle,

Although Theorem 3.1 applies to any obstacle T, it requires
that B satisfy (3.3). When I’ is a circle or sphere of radius b,
the conclusion of Theorem 3.1 follows without (3.3). To prove
it we write {J = U + U, throughout the entire annolus b =
r = a and suppose that U satisfies the homogeneous form
of (2.1), (2.2), and (3.2). Then U, satisfies the homogeneous
problem with the DtN condition (2.4) on + = g, so Us = 0.
Similarly, U. satisfies the homogeneous problem with 8,0/, =
BU. on r = g, so U, = 0 by assumption. This implies that
{J = 0. Thus we have proved the following theorem.

TrHEOREM 3.2. Let I C () be a circle in two dimensions or
a sphere in three dimensions. Suppose that the solution of (2.1)
and (2.2) with 3,U/ = BU on r = a is unigue. Then (2.1) and
(2.2) with the modified DN condition (3.2) is unigue for all
N=z=0.

The same conclusion holds in elliptic or spheroidal coordi-
nates, with S defined by . = a and r replaced by w in (3.2).

As an application of Theorem 3.2, let us choose B = 3, +
Bs, where B; is the second BGT operator defined in (4.11) with
m = 2. In [2] it was shown that (2.1) and (2.2), with B,U =
0 on r = a, is well-posed for I" a sphere. Theorem 3.2 shows
that the problem remains well-posed when the modified DiN
condition (3.2) is used with B = B, + 3,.

This theorem holds when [" is a circle, sphere, ellipse, or
spheroid, which is a limited class of obstacles. Of course, the
most important applications of the DIN and the modified DtN
boundary conditions are to obstacles I', which are not separable
coordinate surfaces, Theorem 3.1 applies to such I for a re-
stricted class of boundary operators. Theorem 3.2 suggests that
uniqueness may hold for a more general class of boundary oper-
ators.

A typical solution using the DtN boundary condition in pro-
late spheroidal coordinates is shown in Fig. 1.

4. THE MODIFIED DtN CONDITION: APPLICATIONS

4.1, General Method

Now we shall derive modified DN boundary conditions for
the following four artificial boundaries: the circle, the sphere,
the ellipse, and the prolate spheroid. In each case we begin
with a particular local operator B, and then we use it to derive
(3.2) for the geometry considered. To obtain B, we proceed as
in [2] and construct a differential operator B, that annihilates
the first s terms in the large distance expansion of any solution
{/. We note that this expansion is convergent in three dimen-
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FIG. 1. Contour lines of Re U} are shown for the scattering of a plane
wave incident from the right, by the prelate spheroid g = 0.1 of aspect ratio
10: 1, with &£ = 47. The numerical solution is computed using the DtN boundary
condition (4.46) with N = 15, and the artificial boundary § is the spheroid
=05

sions, but only asymptotic in two dimensions. In Section 5 we
derive an improved local boundary condition in the circular
case by using a convergent, instead of an asymptotic, expansion.

We shall then compare the accuracy of the various boundary
conditions through a series of numerical experiments. In each
one of them we consider the scattering of an incident plane
wave U’ impinging upon one of the following obstacles: a
circular cylinder, an elliptic cylinder, a sphere, and a prolate
spheroid. On the surface of the obstacle we impose the acousti-
cally soft boundary condition U = U' + U* = 0. The exact
solution for the scattered field £/ is computed using a plane
wave expansion {4]. Because of the inherent symmetry of each
problem, it is sufficient to compute the solution for 0 < 8 =
7, with the boundary condition 3,0/ = O0on 6 = 0 and § = 7.
In ali cases, the numerical solution is computed using a second-
order centered finite difference discretization. The grid is evenly
spaced with 40 intervals in r or @ and 240 in 0 = 6§ = 7.
The grid is fine enough to ensure that when a local boundary
condition is used, the error is essentially due to the imposition
of the boundary condition, and it is not due to the discretization
error of the finite difference approximation.

Atany mesh point on S, the centered finite difference approxi-
mations to the radial derivatives that appear in (2.1) involve
one unknown, which lies outside of (1. Since it also appears in
the centered finite difference approximation to the nonreflecting
boundary condition, we can eliminate it from the linear system
of equations. The inner products along the outer boundary are
computed using Simpson’s fourth-order quadrature rule. The
solution U5 of the resulting complex linear system is computed
in double precision FORTRAN with a banded direct solver
from LAPACK. We validated our code in the circular case by
comparing our results with those obtained using the Matlab
implementation of Ernst [5].

The error is always computed in the maximum (or L-infinity)
‘norm over the entire domain {) and normalized with respect
to the exact solution:

Vi = Ul 'UL

error =

4.1
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We note that the relative and absolute errors coincide because
the maximal modulus of the solution U* always occurs on the
surface of the obstacle, where it is equal to one. The DtN
and modified DtN conditions require the computation of some
special functions, such as Hankel, Mathieu, or spheroidal wave
functions. The work required to compute them is negligible
compared to the work in solving the linear system.

4.2 The Circular Case

We begin with polar coordinates in two dimensions r, 6 with
the outer boundary located at r = a. The sequence of local
operators B, derived in [2] is

(4.2)

where / = 1 is the rightmost term in the product. The boundary
condition on r = a is

B.U=0, r=a.

4.3)
By setting B = B,, + d,, we can rewrite (4.3} in the generic form

4,U = BU, (4.4)

r=a.

We can now use B in (3.2) to modify the DtN boundary con-
dition.

To obtain the modified DIN condition using B,, we write
(4.4) withm = 1 as

a,U(a, ) = (Ik - El-) Ula, 6). (4.5)

Next, on the right side of (2.3) we add and subtract (ik —
112}/, and include the subtracted term in the sum. Truncating
the series at &V yields the modified DtN condition:

a.Ua, ) = ( ik — ——) Ula, &)

1 KH (ka) 1 (4.6)
7 ( T B
f " cos n(f— 0)Ula, ) d6'.

When m = 2, the analysis is similar but slightly more in-
volved. First we rewrite B,U = 0 given by (4.2) with m = 2 as

a,Ua, = (f—a — Kla — 3ik + (4 — 2ika)d, + aaf) Ua, 6.

4.7
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FIG. 2. Scantering of a plane wave from the infinite circolar cylinder r =
0.5. The artificial boundary is located at » = . The relative error (4.1) is
shown versus the truncation point N in the boundary conditions (2.5) and (4.9):
left, k = 2u; right; &k = 47,

Next we add and subiract (4.7) from the right side of (2.5).
Since HY" satisfies Bessel’s equation

2
Hov + L 4 (1 + %) HP =0, 4.38)
Z Z

we can express HY" in terms of first- and zeroth-order deriva-
tives. Then we truncate the series at N to obtain the modified
DtN condition,

3
3,U(a, 6) = ($ — k'a — 3ik + (4 — 2ika)d, + aaf) Ula, 8)

N (4.9)
iy z,,fz cos (8 — §)Ua, &) d¥,
ﬂ'n=0 0

where the constants Z, are given by

kR (ka) | 1 3
—r - ‘4 2.0 2 .2 ;
Hota) | (Zk a 3 n?+ 3zka).
(4.10)

Z, = 2ika — 1)

It is to be expected that (4.9), employing B,, will he more
accurate than (4.6), employing B,, and we have performed
numerical computations which verify this. Furthermore, it is
not much harder to implement B, than B,. Therefore, we shall
now illustrate the accuracy of (4.9), based upon B;.

To test the accuracy of the boundary condition (4.9), we
consider the scattering of an incoming plane wave U’ = g™,
It impinges upon an infinite circular cylinder whose cross sec-
tion is a circle of radius r = 0.5 in the xy-plane. We choose
the outer boundary to be the circle r = 1 and solve the resuliing
problem as described in Section 4.1. In Fig. 2 we compare the
relative error (4.1) obtained by using the DIN condition (2.5)
truncated at N with that obtained by using the second modified
DN (MIMN) condition (4.9) for different values of N. We
choose k = 27 and k = 47 and apply the boundary condition
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for increasing values of N. The sum is truncated at N, which
is included in the sum, Thus for N = —1, the sum completely
vanishes and (2.5) reduces to 38,0(a, 8 = 0, whereas (4.9)
reduces to B,I/ = 0. We see that for small values of N the
error in using the truncated DtN operator remains very large
because of the spurious eigenmodes. When & is large enough
so that the DIN map captures the main harmonic modes present
in the solution, the error quickly reaches its lowest value for
the given grid. The modified DIN condition, however, vields
an acceptable accuracy even for small values of N, since it
merely improves upon the local boundary condition used to
modify it. This is an advantage, since it is usually not known
in advance how high N must be to reach a desired accuracy.
Setting ¥ = ka merely ensures well-posedness, but it does not
guarantee optimal accuracy on the underlying grid. For large
values of N, the error for &k = 27 is smaller than the error
for & = 4m, because we have used the same grid for both
computations. Indeed, at very large values of N, the error is
mainly due to the finite resolution of the grid. For smail values
of N, the boundary condition behaves like a local boundary
condition. For local boundary conditions, the dependence of
the error on & is shown in Fig. 6,

4.3. The Spherical Case

We consider the polar coordinate system r, #, ¢ in three
space dimensions, related to the rectangular coordinate system
by x = rcos @ cos ¢, y = rcos @sin ¢, and z = r cos 6.
Hence, the positive z-axis coincides with & = 0 and the negative
z-axis with 8 = . The local operator B, derived in [2] is

4.11)

where ! = 1 is the rightmost term in the product. Next, we
introduce the notation

mf6, . 8, ") = 20

BiPi{cos B)Pi{cos §')cos j(d — ¢').
(4.12)

Here the prime after the sum indicates that the term with j =
0 is multiplied by % The constants B,; are defined by

_@n+ D - )

Py 2a{n +j)! (@.13)

The solution of the exterior radiation problem can then be
wrilten as

Ur, 8, ¢)

- jaH Wialkr)
SN rHOplka) i ¢

(4.14)
my(0, ¢, 0, U (a, O, &) dF".
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Here dF' = sin 8 do’ 46’ denotes the differential surface
element on the unit sphere ¥. We differentiate (4.14) with
respect to r and set r = g to abtain the DN condition
d.Uta, 8, ¢)
KHlka) 1
Hpka) 2a

] B, &, 6. $ Wi, 8, 8 dF"

(4.15)

I
iIMR

To obtain the modified DIN condition for m = 1, we simply
rewrite (4.3) at r = a as 3,0 = {ik — V/a)U, with B, given by
{(4.11). Then we add and subtract (it — 1/a)7 on the right side
of (4.15) and include the subtracted term in the sum, Finally,
we truncate the sum at N to get

3.U(a, 6. p) = (:k - —) Ula, 6, ¢)

«
+ 2 [kH ll.'z(ka) (4.16)

H\aka)

ik 1]
a
[ m.6.0, 020 0, )45
¥

To derive the second modified DN condition, we set
= (gd? — 2ikad, + 58, — dik — Fa + 2/a)U (4.17)

and rewrite B,/ = 0 as 8,I/ = BU at r = a. Next, we add and
subtract BU on the right side of (4.15) and include the subtracted
term in the sum. To do so, we need to compute —~BHN »(kr)/
Vratr = aand replace second-order derivatives by zeroth-
and first-order derivatives of H{},, using (4.8) with # replaced
by n + § After some algebra this yields the modified DIN con-
dition

3,Uia, 6, ) = (aaz — 2ikad, + 5,

— dik — Ka + %) Ula, 8, &) (4.18)

N
+22,[,m6, 6.0, ) (a 0, ¢ 45"
n=0

with the constants Z, given by

H{nlka)
H Sull 1.'2(ka)

+ (Bika + 2(ka) — n* —n — /a.

Z, = 2k(ika — 1) @.19)
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FIG. 3. Scattering of a plane wave from the sphere r = 0.5. The artificial
boundary is locared at r = L. The relative error (4.1) is shown versus the
number N of terms retained in the boundary conditions (4.15) and (4.18): left,
k = 2, right, k = 47,

We now consider the scattering of a plane wave U’ = ¢*%
from a sphere of radias r = 0.5. Because the z-axis coincides
with the direction of propagation, we take advantage of the
axisymmetry of the problem. It can be solved in the two-
dimensional region 0.5 = r = 1,0 = g =< 7, with 8,0/ = O on
8 =0 and 8 = 7. In Fig. 3 we compare the relative error
obtained by using the DtN condition (4.15) truncated at N with
that obtained by using the modified DN condition (4.18) for
different values of N, For N = —1, the DtN condition reduces
to 8.L/ = 0, whereas the modified DtN condition reduces to
{(4.3) with B, given by (4.11). Again we observe the expected
higher accuracy of the modified DtN condition for smail values
of N,

4.4, The Elliptic Case

We now consider the more general case of an elliptic artificial
boundary, which can accomodate highly elongated obstacles.
The elliptic coordinates w, 6 are related to the rectangular
Cartesian coordinates x, y by

x=fcoshpucos 8 y=fsinhusingd (420)
Thus, for a constant value of w, x and v describe a confocal
ellipse with foci located at (—f, 0) and (1, 0). If we let £ =
cosh g, the eccentricity of the ellipse is £! and the ratio of
major axis to minor axis is equal to &V £ — 1. Next, we set
= }ff2, and let . = a denote the outer boundary on which

we seek the DN condition,

We denote Mc™u, g), r = 0, 1, ..., and Ms&(u, @), r = 1,
2, ..., the (radial) Mathien—Hankel] functions [6]. The angular
functions ce (8, q) and se (6, q) satisfy Mathieu’s equation

dy
T > 4 (A —2qcos26)y=10,

(4.21)
with the separation constant A denoted by 4, and b, for ce, and
se,, respectively. They form a complete orthogonal set over
the interval 0 = @ = 27 and are normalized such that
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[Trceo.arao= [Tiseto. P a0 =7 (422)

The radial functions Mc!® and Ms® satisfy Mathieu’s modified
differential equation

2
gr— (A — 2gcosh 2w}y =0,

(4.23)
with the separation constant A denoted by a, and b, for Mc®
and Ms® respectively.

The solution of the exterior problem @ = g is

e, Pl
U(M,8)=lz c(u. q)

= " t LS
72, e q) 0.9 [} U@ Oce 0.9 0

MsP(u, )
_2 q

WPie.a) se,(6, q) (4.24)

f z Ula, 6')se ', q) d6'.

To derive the DIN map, we simply differentiate (4.24} with
respect to g, and set & = a. This yiclds

1< McP'(a, )
3,U(a, 0) = E_‘a———M 5 “')

25
ce 8.9 [} Ula, 6ce8', g de’
1 i Ms?'(a, 9)

) Moa ) @ se (8, q)

4.25)
[ v@ 6se 0. 949

To modify (4.25) we need a local boundary condition, which
we shall impose on the modes beyond the point of truncation.
We simply extend to the ellipse the procedure employed in [2]
for the circle. We begin with the asymptotic representation of
the solution for large p, which is derived in the Appendix:

eilfethu) 2 2,65 k)

Vmkf cosh p m=o Lkf cosh )™

Ulu. 8) ~ (4.26)

We note that (4.26) is formally identical to the asymptotic
expansion in the polar coordinate case, with r replaced by f
cosh . Therefore we replace r by f cosh w in (4.2) and obtain
the sequence of local operators,

43
= K+ o
Bn = H smh s a,u Tk 2fcosh

), (4.27)
where [ = 1 is the rightmost term in the product. The operator
B,, annihilates the first m terms in (4.26). Therefore for large
&, B,U has the asymptotic behavior
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B,U = O([kf cosh ;.c]‘(z’"“m). (4.28)

Thus in elliptic coordinates, the analogue of the BGT boundary
condition is

B.U =0, (4.29)
with B, given by (4.27).

Modifving (4.25) with B, is straightforward and similar to
the procedure used for the circle. We simply set B,/ = 0 at
@ = a and then rewrite it as

a,U(a, B) = (ikfsinh a — Ftanh a) U(a, 6).  (4.30)
Again, we add the right side of (4.30) to (4.25) and then subtract
it, and we include the subtracted term in the sums. We then
truncate the sums at = N, which yields the first modified DIN
boundary condition,

a,Ula, & = (ikf sinh a ~ $tanh @) Ula, &

N
+ 23 Zice 0.9) [ Uta, #) ced!, g) db!
=y o

1 o 1 r 4
o 2 Zise, (0, g) j " Ula, 0)se 0. 9) a8,

(4.31)

with
€= % — ikfsinh a + —Iz-tanh a, (4.32)
§ = %%])2 — ikfsinha + %tanh a. {4.33)
To modify (4.25) using B,, we set ByU/ = J at o = a and

cast it into the standard form,

d,Ha, ) = 32+ (a+ Ha, + Bla 6, (434

with
« = 3tanh a — 2ikfsinh a — coth q, (4.35)
B= %tanh2 a — (kf sinh @)* — 3ikfsinh atanha. (4.36)

Next, we add the right side of (4.34) to (4.25) and then subtract
it, including the subtracted term in the sums. We replace the
second derivatives of Mc® and Ms® using (4.23), and we
truncate the sums at r = N. This gives the second modified
DN condition,
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F1G. 4. Scattering of a plane wave from the elliptic cylinder g = 0.1 of
aspect ratic 10: 1. The artificial boundary is located at & = 0.5, The relative
error {(4.1) is shown versus the truncation point & in the boundary conditions
(4.25) and {4.37): left, k = 2m; nght, k = 47

& Ula, &) = (@5 + (e + Da, + B) Ula, §)

N
+ %2 Zice(6,9) [ Uta, 0)ce 8. q) dO (437)
r=0

N
+ 1-17 > Zise0.q) [ Uta, 0)se8'. q) 4,
r=|1

with
. McP'(a, q)
Zé=2gcosh2a—a, — 8 — am, (4.38)
M }})" 2
2= 2gcosh2a — b, — § — a B @4 43

MsPa, @)

We now consider the scattering of a plane wave U’ = &*
from the infinite elliptic cylinder ¢ = iy, whose cross section
in the xy-plane is a confocal ellipse with foci iocated at (1,
0). We set g = 0.1, so that the aspect ratio of major to minor
axes is about 10: 1, and we choose a = 0.5. The propagation
direction of the incident wave coincides with the major axis of
the ellipse. The characteristic values and Fourier coefficients
of the Mathieu functions are computed using code described
in [7] and available from Netlib. The radial functions Mc® and
Ms® are calculated using rapidly converging series in produocts
of Bessel functions [6] and were checked for accuracy against
[8]. In Fig. 4 we compare the relative error obtained by using
the modified DIN condition (4.37) for different values of N.
For N = —1, the DN condition reduces to 4,/ = U, whereas
the modified DN condition reduces to (4.29) with B, given by
(4.27). Again we observe the expected higher accuracy of the
modified TN condition for small values of N. The error using
the truncated DN condition is large as long as N is small, but
it then decreases very rapidly to its optimal value. This behavior
is, of course, problem dependent. The discrepancy between the
solutions with the DN and the modified DtN conditions for
large values of N is due to the fact that we have replaced the
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differential operator B, by a finite difference approximation, It
is negligible in the sense that it lies within the range of the
discretization error and is clearly overemphasized by the loga-
rithmic scale.

Next, we vary the aspect ratic of the elliptic cross section
of the obstacle . = py. In Table T we compare the performance
of various boundary conditions for the two aspect ratios 10: 1
and 2: 1. The relative error is computed over the region w, =<
& = wp + 0.1, and the mesh size Ax remains constant as the
artificial boundary g = a gets closer to the obstacle. The relative
error when the DIN condition {4.25) is used remains smaller
than 0.075% regardless of the location of the artificial boundary
and the shape of the obstacle. The local boundary conditions
(4.29), however, perform rather poorly in the highly elongated
case py = 0.1, Their accuracy improves as the artificial bound-
ary moves away from the obstacle.

4.5. The Prolate Spheroidal Case

We now present the DtN condition and its modified versions
in prolate spheroidal coordinates. This coordinate system ac-
commodates elongated cigar-shaped obstacles. Let u, 8, ¢ be
the prolate spheroidal coordinates related to Cartesian coordi-
nates x, y, z by

x = feoshpcos 8, y=fsinh u sin fcos
(4.40)
z = fsinh w sin @ sin ¢,

Here 0 = 8 =7, 0 = ¢ < 247, and 1 = 0. Thus, a surface of
constant u is an ellongated ellipsoid of revolution with major
axis of length 2f cosh u. Surfaces of constant 6 are two-sheeted
confocal hyperboloids of revolution, and surfaces of constant
¢ are planes containing the major axis, which coincides with
the x-axis. We set ¢ = kf and £ = cosh w and denote by
R(c, & the radial prolate spheroidal wave functions of the
third kind [6, 9]. They satisfy

TABLE 1

Scattering of a Plane Wave from the Elliptic Cylinder
m= o with k = 27

#y = 0.1, Aspect ratio 10:1 g = 0.5, Aspect ratio 2: 1

®=a a=02 a=035 a =06 a=10
Local. m = 1 18% 10% 1% 27%
Local, m = 2 25% 2.6% 52% 0.26%
DN, N = 15 0.011% 0.032% 0.024% 0.063%

Note. The artificial boundary is located at g = @, and the error is computed
over the domain gy = u =< py + 0.1, The relative errors uvsing the local
boundary conditions (4.29) and the DtN condition {4.25) are shown for two
different aspect ratios.
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2

d
;ﬁ[(él— 1)diy] - (A—02§2+ gzm_ 1)y=0. (4.41)

Here A = A, (c) 15 a separation constant, which reduces to
Am0) = n(n + 1) in the sphercal case.

The angular prolate spheroidal wave functions of the first
kind are denoted by 5{)(c, cos ). n = 0, 0 = m = n. They
form an orthogonal set over the interval 0 = ¢ = 27, We
normalize the angular functions as in [10], namely,

2 (n+m!

1
! st P an= = ot

(4.42)

Next, we let

m(0, &, 8, ¢") = Sih(e, cos B)SW(e, cos 8') cos j(dp — &)
(4.43)

and define the constants

_@n+Dn—jH

By 2m(n + ) (@.44)

We write the solution to the exterior radiation problem in
the region w = a as

i '8 R§(c, cosh p)
* RP(c, cosh a)

Ulp, 6, ) = >,
n=0 j=0

@.45)
[ U@ 8, &m0, 6.0, ¢) .

The prime after the sum indicates that terms with j = 0 are
multiplied by 3 To get the DtN condition at u = a, we differenti-
ate {4.45) with respect to u and set . = a. It is

a.Ua, 0, )
) (4.46)
'Z, LP Ula, 0, ¢ ml8, &, 8, ') dF",

with

7 - B;. sinh a RE" (¢, cosh a)
i R¥(c, cosh a)

(4.47)

To modify (4.46) we must first construct a local boundary
condition, It was shown recently by Holford [11] that the solu-
tion U admits the multipole expansion

_ i"*ifg(ﬂ, &; k)

= - 448
B Gy (*48)
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The series converges absolutely and uniformly for £ =
cosh a, and it can be differentiated term by term. It is formalily
identical to the series used in [2], with r replaced by f£. By
replacing r in (4.11) by f£, we obtain the analogous sequence
of local operators

B.=|1 i—ik+£1), m=1, (449
i=1 fg

where [ = 1 is the rightmost term in the product. The operator
B, annihilates the first m terms in (4.48). We can use it to
construct the local boundary condition

B,U=0. (4.50)

The derivation of the first modified DtN condition is similar
to previous analyses and yields

a,Ula, 8, ¢) = (ikf sinh a ~— tanh a) Uta, 0, ¢)

N n
1202, [ U@ m6.6,8.,

n=0 j=0
(4.51)
with
_ Bnsinha RY'(c,cosha)
i = RO, cosh a) — ikfsinh g + tanh a. (4.52)

To derive the second meodified DtN condition, we re-
wrte B,V = 0 at p = a as 3, = BU, with B = (& +
(¢ + 1)3, + BYU. Here

o = 4 tanh a — coth a — 2ikfsinh a,
3 = 2 tanh®a — (kfsinh a)* ~— 4ikftanh a sinh a.

(4.53)
(4.54)

Next, we add BU to the right side of (4,46) and then subtract
it, including the subtracted term in the sum. We use (4.41) to
evaluate RZ(c, cosh w) and obtain the modified DtN condition

N n
3,Ula, 8, ¢) = BU(a, 6, &) + 2. > 'BuZs
n=0 j=0

(4.55)
[, U@ 6. 4mu(6,4,0. ¢ a9

Here the constants Z, are given by
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FIG. 5. Scattering of a plane wave from the prolate spheroid g = 0.1 of
aspect ratio 10 1. The artificial boundary is located at w = (.5. The relative
error (4.1} is shown versus the truncation point & in the boundary conditions
{4.46) and (4.55). lefi, k = 2, right, k = 47,

cotha — a)sinh a RY'(c, cosh
z, = { a a)3)l a RY'(c, cosh a) T cosha — A,
RP(c, cosha)
) (4.56)
B'l

sinh® a

with a and 3 given by (4.53) and (4.54).

We note that it is easy to derive corresponding boundary
conditions for oblate spheroidal coordinates, since the two coor-
dinate systemns are simply related by the transformations £ —
i&, c — —ic, and £ = sinh w. Moreover, a multipole expansion
similar to (4.48) was developed in [11] for oblate spheroidal
coordinates. Thus in oblate spheroidal coordinates, both the DtN
condition and the corresponding sequence of local boundary
operators can be obtained from (4.46) and (4.49) by performing
this simple change of variables.

We now consider the scattering of a plane wave U’ = e®
from a prolate spheroid, whose elliptic cross section is a confo-
cal ellipse with foci located at (£ 1, 0, 0). We let g, = 0.1, so
that the aspect ratio of major to minor axes is about 10: 1. The
incident direction is along the x-axis, which coincides with the
major axis of the spheroid. The radial and the angular spheroidal
wave functions are computed using [12, 13]. In Fig. 5 we
compare the relative error obtained by using the DN condition
{4.46) truncated at N with that obtained by using the modified
DtN condition (4.55) for different values of ¥. For N = —1,
the DtN condition reduces to 4,1/ = 0, whereas the modified
DtN condition reduces to (4.50) with B, given by ( 4.49). Again
the error using the modified DIN condition is much smaller
than that obtained using the truncated DtN condition for small
values of N. It then decreases as N increases. The error using
the truncated DtN condition remains large for small N, but then
decreases very rapidly to reach its optimal value.

Next, we vary the aspect ratio of the spheroid p = pg. In
Table 11 we compare the performance of various boundary
conditions for the two aspect ratios 10:1 and 2: 1. This table
is similar to Table I, and the discussion in the last paragraph
of Section 4.4 applies to Table II as well.
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TABLE 1I

Scattering of a Plane Wave from the Prolate Spheroid
M= mowith k=2

1y = 0.1, Aspect ratio 10:) Mo = 0.5, Aspect ratio 2: ]

p=a a=102 a =105 a= 0.6 a=10
Local, m = 1 38% 13% 18% 5.5%
Local, m = 2 44% 7.4% 8.5% 0.70%
DiN, ¥ = 15 0.035% 0.033% 0.022% 0.064%

Note. The artificial boundary is located at & = @, and the error is computed
over the domain gy, =< p =< uy + 0.1. The relative errors using the local
boundary conditions {4.46) and the DtN condition (4.49) are shewn for two
different aspect ratios.

5. IMPROVED LOCAL BOUNDARY CONDITIONS

The DN and modified DtN boundary conditions are nonlocal
in space, because they involve inner products over the whole
artificial boundary S. The BGT [2], the Engquist-Majda [14],
and the Kang [15] boundary conditions are local. To achieve
convergence to the exact solution for a fixed location of §, one
must gradually increase the order of derivatives that appear in
the local boundary condition, as one refines the mesh. Other-
wise, the numerical solution will not converge to the restriction
to Q) of the exact solution. Instead, it will converge to the
solution of a different problem, which satisfies the local bound-
ary condition. In comparison, the DtN condition can be made
arbitrarily accurate by increasing the value of N, without taking
higher derivatives or increasing the size of {}. This is clearly
illustrated in Table III, where we see that the error for the DtN
method steadily decreases by a factor of 4 as we halve both
Ar and A6G. The error of the solution using the local boundary
conditions (4.11} is barely reduced as we refine the grid. This
indicates that the error introduced at the artificial boundary
dominates the discretization error. However, a key advantage
of local boundary conditions is that they do not require S to
be a separable coordinate surface, We shall now derive a new
sequence of local boundary conditions in two dimensions,
which can be used at any artificial boundary §. -

TABLE IIT

Scattering of a Plane Wave from the Sphere r = 0.5, with k = 27
and the Artificial Boundary Located at r = 1

Grid size BGT,m=1 BGT, m = 2 DN, N = 15
10 X 60 19% 2.9% 1.7%

20 X 120 18% 1.6% 043%
40 X 240 17% 1.4% 011%

Nate. The relative error (4.1) 13 shown for the BGT local boundary conditions
(4.11) and the DiN global boundary condition (4.15) as the grid is refined.
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The local boundary conditions (4.3) were obtained in [2)
using an asymptotic expansion of the solution U/ for large values
of kr. This explains their rather poor performance for smali
values of ka. We shall now derive a new sequence of local
boundary conditions based on an expansion due to Karp
[16], namely,

SEEAL)

—n

(5.1)

U(r, B) = H(Ulj(kr) i f_.,;iﬁ
n=0

+ H{kr)

This series converges uniformly and absolutely for » = « and
may be differentiated termwise with respect to » as often as
desired. We do not expand the two Hankel functions HY and
H'U for large values of kr, as was done in [2]. Instead, we
construct a sequence of differential operators L,,

Ly= (3% + Cyd, + Dy), (5.2)

L=+ Cd,+ D)Ly, n=12,., (5.3)
which annihilate all terms in (5.1) up to and including r ™" (see
also [17]). We then apply the boundary condition
LiU=0 (5.4
at the outer boundary S.
To construct Ly, we apply it to both H{(kr) and H{""(kr) and
require that the result be zero. This immediately gives

1, 1 (HY G Hi”’(kr))"
Co=~+=— - 5.
kP (Hg,”(kr) HVGkr) ) ©:3)
HPGRrH Y kry\ ™
D0=k1_%(l_M) . (5.6)
r HY' Gr) H(ker)

By construction, we see that LU (r, 6) = O((kr)~2*2)). Since
B, is based upon an asymptotic expansion of the solution for
large values of kr, it is clear that L, will approach B; asymptoti-
cally for large kr. This is illustrated in Fig. 6, where we have
kept the outer radjus fixed at ¢ = 1, while increasing k.

We note that L, coincides with the localized second-order
DtN operator presented in [18]. This is because L, is the unique
second-order differential operator that annihilates both H{ and
H'". But L, does not coincide with the fourth-order localized
DiN operator. Indeed the laster annihilates A, H®, H{, and
H{", whereas the former annihilates H’, H{"/r, H{", and
H{"/r. Thus, they must differ since H{" cannot be written as
a linear combination of H{", H{"/r, H", and H{"/r.

We now compare the relative error (4.1} in the solution using
the BGT boundary conditions (4.3) with m = 1, 2, with the
error when the local boundary condition (5.4) with n = 0 18
used. The artificial boundary is located at r = @ with a = 1,
and we let k range from 0.01 up to 10. In Fig. 6 we see that
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FIG. 6. Scattering of a plane wave from a circuiar cylinder of radius r =
0.5. The relative error (4.1) for various local boundary conditions imposed on
r = 1 is shown versus the wave number k.

for small values of & the solution obtained with (5.4) is several
orders of magnitude more accurate than that obtained with the
two boundary conditions (4.3). For larger values of k the errors
obtained with L, and the BGT condition with m = 2 become
equal, as is to be expected, since they have the same asymptotic
behavior for large values of ka. Although the relative error for
Ly s slightly larger for medium frequencies, this discrepancy
is problem dependent and is clearly overemphasized by the
logarithmic scale of the graph. We note that unlike the BGT
condition (4.3) with m = 2, the relative ervor for L, remains
smaller than 1% for all values of k.

6. CONCLUDING REMARKS

A. We have presented a modification of the truncated DiN
boundary condition. It ensures well-posedness of the boundary
value problem in the computational domain for all wave num-
bers, and in general improves upon the accuracy. Although
we have presented the modified DIN condition only for the
Helmbholtz equation, our procedure applies to other equations
for which DiN boundary conditions have been developed [19].
The modification procedure can also be applied to the exact
nonreflecting boundary conditions that were obtained in [20]
for the time-dependent wave equation in three space dimen-
sions. We have also derived the DN and modified DIN bound-
ary conditions for elliptic and prolate spheroidal coordinates.
Finally, we have presented several new sequences of Jocal
boundary conditions in circular, elliptic, and prolate spheroi-
dal coordinates.

B. When the DiN boundary condition is truncated at mode
N, two difficulties are introduced. The first is that the resulting
problem in the bounded domain {2 will have eigenvalues of the
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parameter ka. Then the problern in ) is not uniquely solvable if
ka is an eigenvalue, and it is ill-conditioned if ka is near an
eigenvalue. The second difficulty is that for any value of ka,
the solution will be inaccurate if ¥ < N,, where N, is the
highest mode number in the exact solution of the problem
considered. Both difficulties can be overcome by choosing N
large enough. IN-conditioning can be avoided by choosing
N = ka, and inaccuracy can be avoided by choosing N = N,.
The modified DtN condition eliminates the first difficulty and
mitigates the second one, even for small values of N.

C. Local boundary conditions, such as those of Bayliss,
Gunzberger, and Turkel [2] and the improved conditions (5.4),
can be used even when the artificial boundary is not a circle
or sphere. However, the derivatives which appear in them must
be radial derivatives with respect to some origin inside the
artificial boundary. The coefficients in these conditions must
be evaluated at the distance r from the origin to the artificial
boundary, which will vary with position on the boundary. In
general, the derivatives will not be normal to the artificial
boundary, but will be combinations of normal and tangential
derivatives. Similarly, the lacal boundary conditions (4.29) in
elliptic coordinates and (4.50) in spheroidal coordinates can be
used on any artificial boundary. The derivatives must be with
respect to the radial coordinate w in some appropriate elliptic
or spheroidal coordinate system.

D. In modifying the DtN condition, we could use any local
boundary condition. For example, in two dimensions when the
artificial boundary is a circle, we could use either one of the
BGT conditions (4.3), or one of the improved boundary condi-
tions L, given by (5.4), or one of the localized DIN conditions
[18]. Our calculations, showi in Fig. 6, indicate that L is better
than the second BGT operator B, for small wave numbers, We
have not used it to modify the IMN condition, because it is
only better at small wave numbers, where even a few DN
terms provide adequate accuracy. Modifying the DtN operator
is mainly intended to improve the boundary condition at high
wave numbers. Any boundary operator based on the large dis-
tance expansicen, such as B,, and L,, can be used.

The DIN boundary condition can be modified with a first,
second, or higher order local operator. A first-order operator
leads to a well-posed problem for arbitrary obstacles at all wave
numbers and, hence, yields a robust boundary condition. A
second-order operator provides a more accurate boundary con-
dition. Its implementation is straightforward if the finite differ-
ence method is used. To employ it with the finite element
method, the second-order radial derivative must be expressed
in terms of second-order tangential derivatives, which are then
enforced weakly at the artificial boundary S. Higher order opera-
tors are more accurate but require a greater effort to implement.
If the finite difference methed is used, they extend the coupling
between unknowns at S into {1, which results in a linear system
with a wider bandwidth. If the finite element method is used,
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these operators require special basis functions, which provide
higher reguiarity than C° on § [21].

APPENDIX

We now derive the asymptotic expansion (4.26) of Uy, )
for large u. Let i = g with g > 0 be the ooter elliptic boundary.
In the exterior domain w == a the solution U is given by (4.24).
The radial Mathieu-Hankel function Mc” admits the asymp-
totic expansion [6, Eq. (20.9.1) with » = r and & = 0]

HZVg cosh g —rmi—mi) o
(}) —~— e Dm(ar)
Mer . 9) Va\/g cosh u ;1 [-4iv/g cosh p]™

(A1)

The radial function Ms® admits the same expansion with r
replaced by —r and the right side multiplied by (—1Y; then the
constants D, depend upon b,. We recall that Vg = kff2, and
we replace Mc? and Ms® in (4.24) by their respective asymp-
totic expansions (A.1). Next, we interchange the sums over r
and m to obtain

—~ i(kf cosh p—ufd) grﬂ(g‘ k)
Ui, 0 2k cosh p ¢ E ___[kfcosh L (A2)
Here g,(9; k) is defined by
. — 3 =il ""(a)
g8 ) = 2 | AeT e, q) o0
= (A3)

+ B (6, g) 2l )]

where A, and B, are arbitrary constants.
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